Control of slippage with tunable bubble mattresses.
نویسندگان
چکیده
Tailoring the hydrodynamic boundary condition is essential for both applied and fundamental aspects of drag reduction. Hydrodynamic friction on superhydrophobic substrates providing gas-liquid interfaces can potentially be optimized by controlling the interface geometry. Therefore, establishing stable and optimal interfaces is crucial but rather challenging. Here we present unique superhydrophobic microfluidic devices that allow the presence of stable and controllable microbubbles at the boundary of microchannels. We experimentally and numerically examine the effect of microbubble geometry on the slippage at high resolution. The effective slip length is obtained for a wide range of protrusion angles, θ, of the microbubbles into the flow, using a microparticle image velocimetry technique. Our numerical results reveal a maximum effective slip length, corresponding to a 23% drag reduction at an optimal θ ≈ 10°. In agreement with the simulation results, our measurements correspond to up to 21% drag reduction when θ is in the range of -2° to 12°. The experimental and numerical results reveal a decrease in slip length with increasing protrusion angles when >/~ 10°. Such microfluidic devices with tunable slippage are essential for the amplified interfacial transport of fluids and particles.
منابع مشابه
Effect of Bubble/Droplet Morphology and Slippage on Attachment Induction Time in Deoiling Flotation Process
A modified model has been analytically developed to describe the induction time of an elliptic air bubble in contact with an elliptic hydrophobic oil droplet. The role of hydrophobicity was revealed in the slippage of liquid over the surfaces of bubble and droplet. In this condition, the analytical relationships for pressure distribution and consequently hydrodynamic resistance force through th...
متن کاملModifying a Conventional Grasping Control Approach for Undesired Slippage Control in Cooperating Manipulator Systems
There have been many researches on object grasping in cooperating systems assuming no object slippage and stable grasp and the control system is designed to keep the contact force inside the friction cone to prevent the slippage. However undesired slippage can occur due to environmental conditions and many other reasons. In this research, dynamic analysis and control synthesis of a cooperating ...
متن کاملHigh friction on a bubble mattress.
Reducing the friction of liquid flows on solid surfaces has become an important issue with the development of microfluidics systems, and more generally for the manipulation of fluids at small scales. To achieve high slippage of liquids at walls, the use of gas as a lubricant--such as microbubbles trapped in superhydrophobic surfaces--has been suggested. The effect of microbubbles on the effecti...
متن کاملAcoustofluidic control of bubble size in microfluidic flow-focusing configuration.
This paper reports a method to control the bubble size generated in a microfluidic flow-focusing configuration. With an ultrasonic transducer, we induce acoustic streaming using a forward moving, oscillating gas-liquid interface. The induced streaming substantially affects the formation process of gas bubbles. The oscillating interface acts as a pump that increases the gas flow rate significant...
متن کاملSeismic response sensitivity of the structures equipped with cylindrical frictional dampers to the value of slippage load
Cylindrical Frictional Damper (CFD) is a new revolutionary frictional based mechanical damper. Unlike the other types of frictional dampers, CFDs do not utilize bolts to produce friction between contact surfaces. These dampers consist of two main parts, the inner shaft and the external cylinder. These two parts are assembled such that one is shrink-fitted inside the other. In this investigation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 21 شماره
صفحات -
تاریخ انتشار 2013